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Abstract The screaming cowbird Molothrus rufoaxillaris
has been long known as a host specialist brood parasite.
However, in the past years, the utilization of two new hosts
has been documented. We examined the variation in
mitochondrial control region sequences from screaming
cowbird chicks found in the nests of two hosts, the bay-
winged cowbird (Agelaioides badius), which is its regular
host, and the chopi blackbird (Gnorimopsar chopi), which
is a new host, in Formosa Province, Argentina. If a group of
females switched to this new host, we expected to find an
association between host use and haplotype frequency
distribution, indicating the presence of host-specific female
lineages, whereas we expected no such association if the
cowbird population incorporated this new host and females
use both hosts simultaneously. Haplotype frequency dis-
tributions differed between cowbird chicks from the nests
of both hosts. This indicates that nest choice by females of
this brood parasite is not random and that they preferen-
tially parasitize the nests of the same host species.

Keywords Brood parasitism . Host selection . Host
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Introduction

Interspecific brood parasitism is a reproductive strategy in
which the parasite lays its eggs in the nest of another
species, the host, which performs all the parental care. In
birds, this strategy is present in approximately 90 species
and evolved independently at least seven times (Rothstein
and Robinson 1998; Sorenson and Payne 2005). One
appearance of this reproductive behavior occurred within
the New World icterine blackbirds, and the screaming
cowbird (Molothrus rufoaxillaris) is the most specialized
parasite within this group (Ortega 1998). For a long time, it
has been thought to use a single host species, the bay-
winged cowbird (Agelaioides badius), throughout its entire
distribution (Friedmann 1929, 1963). However, in the last
years, recordings of two new host species have been
documented: the chopi blackbird (Gnorimopsar chopi) in
northern Argentina and southeast Brazil (Sick 1985; Fraga
1996; Di Giacomo 2005) and the brown-and-yellow marsh-
bird (Pseudoleistes virescens) in Buenos Aires Province,
Argentina (Mermoz and Reboreda 1996; Mermoz and
Fernandez 2003). The interactions between the screaming
cowbird and its main host, the bay-winged cowbird, are a good
example of the evolutionary arms race that arises between
parasites and hosts in which the host evolves antiparasitic
defenses to decrease the costs of parasitism that in turn select
for counter-defenses in the parasite (Davies et al. 1989; Davies
and de Brooke 1989; Rothstein 1990; Rothstein and
Robinson 1998; Davies 2000). In this system, hosts (bay-
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winged cowbirds) do not feed chicks that look unlike their
own (Fraga 1998; De Mársico, personal communication) and
parasites (screaming cowbirds) evolved mimetic chick
plumage and calls (Fraga 1979, 1998) to deceive them.

The first description of a parasite chick in a chopi blackbird
nest stems from the beginning of the nineteenth century (Fraga
1996), but due to the high specialization of the screaming
cowbird in parasitizing the bay-winged cowbird, it was
thought that alternative hosts were only used in areas where
bay-winged cowbirds were absent (Sick 1985). However,
later studies showed that both hosts are used in the same
areas, although parasitism rates in the bay-winged cowbird
always exceed 80% (Hoy and Ottow 1964; Mason 1980;
Jaramillo 1993; Fraga 1998), whereas in the brown-and-
yellow marshbird, they go from 5% to 20% (Mermoz and
Reboreda 1996; Mermoz and Fernandez 2003), and in the
chopi blackbird they reach 55% (Di Giacomo 2005).

If the screaming cowbird was historically a specialist brood
parasite that only used the bay-winged cowbird as host, two
alternative hypotheses may account for the present host use.
On the one hand, a few individuals may have switched host,
giving rise to a new population that only uses the alternative
host or, alternatively, screaming cowbird females may have
incorporated the new host, originating a population that uses
both hosts simultaneously.

The aim of this study was to analyze host use by screaming
cowbird females in an area where they parasitize chopi
blackbirds and bay-winged cowbirds. In order to do this, we
used a rapidly evolving, maternally inherited molecular
marker, the mtDNA control region, and determined control
region haplotype distributions between screaming cowbird
chicks found in the nests of both hosts. We expected to find
genetic differences among chicks raised by different hosts if
individual females are host specialists and if female chicks
raised in the nest of a particular host have a strong tendency to
parasitize that same host as adults. On the contrary, we
expected no pattern of genetic differentiation if females are
host generalists or differ in host use with their mothers. In
doing so, we assume that host fidelity has a detectable effect
on the genetic structure of cowbird populations. In the
presence of host switch, we expect to find fewer haplotypes
in the population of females that uses the new host.
Alternatively, if host switch has not been recent, haplotype
number might not be reduced, but we expect to find
haplotypes that are exclusively found in the new host.

Materials and methods

Cowbird samples

Samples were collected from screaming cowbird eggs or
nestlings found in the nests of two hosts in Reserva El

Bagual, Formosa Province, Argentina (26°10′ S, 58°56′
W) during two breeding seasons (October–February
2005–2006 and 2006–2007). Samples were collected
from bay-winged cowbird nests (N=27) and from wooden
nest boxes used by chopi blackbirds (N=31). We collected
one or two samples from each chopi blackbird nest,
whereas samples collected from bay-winged cowbird nests
ranged from one to five. All sampled nests were
maximally 5 km apart, a distance that can easily be
covered by screaming cowbirds. Bay-winged cowbird
nests were found in between two areas of nest boxes used
by chopi blackbirds.

Cowbird samples were obtained from host nests either as
eggs or as blood taken from nestlings. Freshly laid eggs
were artificially incubated to obtain some embryonic
development prior to DNA extraction (Strausberger and
Ashley 2001), and eggs found with some degree of
incubation were directly processed. Embryonic tissue was
extracted from the eggs and stored in dimethyl sulfoxide
buffer for posterior genetic analysis. Blood samples
(20–50 µL) were taken via wing venipuncture of nestlings
and stored in lysis buffer.

We also took samples of adult individuals to assess the
mtDNA haplotype variation of the screaming cowbird
population. Individuals were captured with mist nets during
August 2005 (N=17) and 2006 (N=16) and banded before
release. Blood samples were taken using the same method-
ology used in nestlings.

mtDNA analyses

To assess mtDNA variation, we sequenced a 1,200-bp
fragment of the control region using two sets of primers:
GSL-GLU and GSH-12s (Gibbs et al. 1997) and MBO-L1
and MBO-H2 (Mahler et al. 2007). For 48 individuals
sequenced, only the first segment of the mtDNA region,
corresponding to the fragment amplified by the second pair
of primers, showed nucleotide variation. Therefore, we only
sequenced the 600-bp fragment amplified with MBO-L1
and MBO-H2 for the remaining 43 individuals. DNA was
extracted from blood and tissue samples with a standard
ethanol protocol (Miller et al. 1988). Polymerase chain
reaction amplifications for both sets of primers were
performed in 10-µL reaction volumes using 50–100 ng of
DNA template, 0.5 µM forward and reverse primers,
0.25 mM dNTPs, 2.5 mM MgCl2, and 0.25 U of Invitrogen
Taq-Polymerase. Annealing temperatures were set at 50°C
and repeated for 30 cycles. Amplified products were
sequenced on an Applied Biosystems Model 3100 Genetic
Analyzer using ABI Big Dye™ Terminator Chemistry.
Nucleotide sequences have been deposited in the European
Molecular Biology Laboratory gene bank under accession
numbers EU199785–EU199795.
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Data analysis

The sequences were compiled in Bioedit v.7.0.5.3 software
(Hall 1999) and aligned using Clustal W (Thompson et al.
1994). To control for unintentional amplification of nuclear
pseudogenes (Sorenson and Fleischer 1996), sequences
were checked carefully for double peaks. Additionally,
blood samples yielded the same haplotypes as embryonic
samples where the ratio of mitochondrial/nuclear genomes
is manyfold higher than in avian erythrocytes. Phylogenetic
relationships among mtDNA haplotypes were inferred
using maximum parsimony, as implemented in TNT
(Goloboff et al. 2003). Exact searches were performed
using the “implicit enumeration” option.

The program Arlequin v.2.0 (Schneider et al. 2000) was
used to test for population structure using as data input the
sequences of the different mtDNA haplotypes and their
frequencies in cowbird chicks from the nests of each host.
Genetic differentiation of screaming cowbirds between host
species was assessed using the exact probability test
(Raymond and Rousset 1995) and analysis of molecular
variance (AMOVA) (Excoffier et al. 1992), which partitions
total variance into within-group versus between-group
components (Hudson et al. 1992), through ΦST that takes
into account both haplotype frequencies and molecular
pairwise differences. Significance levels were determined
using permutation procedures as implemented in Arlequin.

Results

A 600-bp variable segment of the mtDNA control region
was sequenced from 58 screaming cowbird eggs or
nestlings found in the nests of two different hosts and from
33 screaming cowbird adults. A total of nine nucleotide

sites varied among individuals, resulting in 11 different
haplotypes (H1–H11; Table 1). Three of them (H4, H8, and
H11) were rare and were only found in adults. Phylogenetic
relationships among the different haplotypes yielded ten
most parsimonious networks that differed in the position of
a few connections (Fig. 1). The number of mutations
between directly related haplotypes was small, showing a
difference of only 1 bp in the majority of the cases (Fig. 1).
This indicates that haplotype divergence is relatively recent
in this population in evolutionary terms.

Haplotype frequency distributions differed between
screaming cowbird adults and chicks for one of the tests
(ΦST=0.004, P=0.26; exact test: P=0.04), which could be a
consequence of a sampling bias including multiple off-
spring of a few females. Therefore, we excluded all the
nestlings but one that were found in the same nest and
shared the same haplotype. Samples coming from bay-
winged cowbird nests were reduced from 27 to 22 and
those coming from chopi blackbird nests were reduced
from 31 to 27 (Table 1; Fig. 1). After this elimination,
haplotype frequency distributions did not differ between
screaming cowbird adults and chicks in any of the tests
(ΦST=0.002, P=0.3; exact test: P=0.1), indicating that
chicks were a random sample of the adult population.

Haplotype frequency distributions were significantly
different between screaming cowbird chicks found in the
nests of bay-winged cowbirds and chopi blackbirds
(ΦST=0.05, P=0.04; exact test: P=0.001; Fig. 1). Some of
the haplotypes were only present in individuals found in the
nests of chopi blackbirds (H5, H9) or bay-winged cowbirds
(H2, H6, and H7), while others were present in individuals
from the nests of both hosts (H1, H3, and H10). For these
latter haplotypes, except for H3, the number of individuals
was not equal between hosts, being H1 most frequently
found in chopi blackbirds and H10 in bay-winged cowbirds

Table 1 mtDNA control region variation of 91 screaming cowbird samples

Haplotype 50 54 95 106 204 216 267 269 472 Frequency (%) Bay-winged cowbird Chopi blackbird

H1 T C T A A C G G G 55 9 21

H2 C . . . . . . . . 4 4 0

H3 . T . . . . . . . 8 5 2

H4 . . . . G . . . . 2 0 0

H5 . . . . . . T . . 7 0 5

H6 . . . . . . T A . 7 3 0

H7 . T C . . . A . . 3 2 0

H8 . . . G . . A . . 1 0 0

H9 . T . . . . T A . 5 0 2

H10 . T . . . . A . A 7 4 1

H11 . . . . . T . . . 1 0 0

Base positions for the variable sites that define haplotypes are relative to the beginning of the 600-bp mtDNA sequence. Dots represent identical
bases to the first sequence. The last two columns show the number of screaming cowbirds of each haplotype found in the nests of both hosts
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(Fig. 1). The AMOVA attributed 6% of the variation to
differences between hosts. Ninety-four percent of the
variation was found between individuals found in the same
host's nests.

Discussion

We found genetic differences between screaming cowbird
chicks found in nests of two host species that coexist in
northern Argentina. Our findings suggest that screaming
cowbird females do not choose nests to lay their eggs
randomly.

Female preference for particular host species has been
found in several host generalist brood parasites. This
preference may target only one host, like in the common
cuckoo (Cuculus canorus; Gibbs et al. 2000), or a group of
hosts, like in the molothrine species (Post and Wiley 1977;
Cruz et al. 1995; Ellison et al. 2006; Mahler et al. 2007),
where only a couple of hosts are used although other
suitable hosts are available in the same area. Imprinting to
morphological, behavioral, or ecological factors seems to
be a widespread mechanism that accounts for nonrandom
host choice in brood parasites (de Brooke and Davies 1991;
Teuschl et al. 1998; Payne et al. 1998, 2000; Vogl et al.
2002). It might also explain host preference in screaming

cowbird females, although we do not know what character
of the host generates the imprinting.

In the group of Icterid brood parasites, comprised of five
species, host specialization seems to be the ancestral state,
retained in the screaming cowbird, which is the basal
species of the clade, whereas the remaining four species
acquired a host generalist behavior (Lanyon 1992). This
view has been challenged by Rothstein and collaborators
(2002) who suggested that host generalism can be consid-
ered as the plesiomorphic state in this group and that
increased specialization in screaming cowbirds occurred
due to longer coevolutionary periods with the host.
Therefore, screaming cowbirds would have become bay-
winged cowbird specialists over time by ceasing to use the
nests of other hosts that evolved defenses against parasit-
ism. Our haplotype distribution pattern can be explained by
both evolutionary pathways, implying, in the first case, a
recent switch to chopi blackbirds by females belonging to
haplotypes H1, H3, H5, H9, and H10 (Fig. 1) and, in the
second case, an evolutionary coexistence of females that
use both hosts. In this latter scenario, switches in host use
also have been present, with a switch to bay-winged
cowbirds in H6 and a reversal to chopi blackbirds in H9,
as well as changes in host use in H3 and H10. Due to the
perfect mimetism of screaming cowbird chick plumage
with bay-winged cowbird plumage, we think that it is more
probable that chopi blackbirds began to be used as hosts
recently. If chopi blackbirds had been used along evolution,
we should find chicks that do not show mimetism with bay-
winged cowbirds, stemming from a lineage historically
associated to chopi blackbirds.

As expected by a host-switching scenario, several
haplotypes are unique to one host species. It is possible
that, if the number of samples increases, these unique
haplotypes appear in the nests of the other host. However,
the highly unequal distribution of hosts for one particular
haplotype suggests that nest choice is not random and that
females tend to parasitize one of the two available hosts. It
could also be argued that the pattern found in this study
arises from the distribution of genetically related individu-
als, with more related individuals being found in the same
area, which also corresponds to the availability of nests of
one host. Our study area includes the nests of both host
species, with the nests of bay-winged cowbirds lying in
between the nests used by chopi blackbirds. Hence, the
haplotype frequency distributions between hosts cannot be
explained by the geographical distribution of screaming
cowbirds.

The use of chopi blackbird nests by screaming cowbird
females of multiple haplotypes implies that host switch
occurred many times and that it was not a unique evolutionary
event. The colonization of the chopi blackbird as host may
have occurred after the “mistake” of these females when

H1

H5H6 H9 

H10 
H7

H3 

H2 

Fig. 1 Unrooted maximum parsimony network for eight haplotypes
found in screaming cowbird nestlings (eggs/chicks). Circles within
boxes represent the 49 individuals found in nests of both hosts (black
chopi blackbird, white bay-winged cowbird). The number of line
segments connecting the boxes gives the number of nucleotide
differences between two haplotypes. Alternative connections defining
other equally parsimonious trees are shown by dotted lines

1606 Behav Ecol Sociobiol (2009) 63:1603–1608



depositing their eggs, a mechanism that has been suggested
for other parasitic species (Davies 2000; Payne et al. 2002;
Sorenson et al. 2003). After the chopi blackbird raised the
offspring of these females successfully, it was subsequently
parasitized by their daughters, giving rise to a group of chopi
blackbird-specialized females. A possible feature that turns
the chopi blackbird into a successful host is that it is a
cooperative breeder. Remarkably, the other two known hosts
of the screaming cowbird, the bay-winged cowbird (Fraga
1998) and the brown-and-yellow marshbird (Mermoz and
Reboreda 1996; Mermoz and Fernandez 2003), are also
cooperative breeders, which would indicate that competition
for food with nestmates may be critical for screaming
cowbirds (De Mársico and Reboreda 2008). The question
that remains unanswered is why chopi blackbirds were not
used earlier by screaming cowbirds. One possible explana-
tion is that imprinting is very strong in this species, limiting
host-switching events, as was suggested by Ellison et al.
(2006). The increase in host number in the derived cowbird
species might be related to the expansion to new areas
containing new potential hosts (Rothstein et al. 2002), added
to a relaxation in the imprinting process, thus allowing the
colonization of new host species. Therefore, the acquisition
of a host generalist behavior in this group might have arisen
as a consequence of a modification in the imprinting
mechanism.
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