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Summary

1. Avian brood parasites include species that are host specialists and others that are
generalists. The impact of each kind of parasite on the persistence of the host popula-
tion is studied by means of a population dynamics model.
2. Our model examines conditions for coexistence and invasions in a community of
three South American cowbirds, the shiny cowbird Molothrus bonariensis (a generalist
parasite), the screaming cowbird M. rufoaxillaris (a specialist parasite), and the bay-
winged cowbird Agelaiodes badius (a nonparasite that hosts the other two).
3. Three biologically realistic characteristics not previously included in brood parasitism
models are explored and shown to be crucial for the stability of the system. These charac-
teristics are: (i) female parasites take at least a day to produce an egg and cannot store
eggs for delayed laying – this is modelled by means of  a type II functional response;
(ii) parasites often remove or puncture (destroy) host eggs when visiting a nest; and
(iii) hosts desert nests when the total clutch (host plus parasite) exceeds some threshold.
4. These characteristics have a direct impact on parasite population renewal and reduce
dramatically the stable coexistence conditions.
5. Comparing the stability conditions of the host–specialist system with those of the
three-species system shows the impact of  the arrival of  a generalist parasite on the
persistence of the host–specialist system when the three characteristics are present. The
stability boundaries are restricted when the generalist is absent and change little for
a realistic density of generalist.
6. The study of invasion by a specialist into a host–generalist stable community shows
that the parameter region for coexistence and invasion coincide.
7. Comparison of our model against its precursors using field data for the parameters
when available, shows that the three-species cowbird model system is stable for empir-
ically realized parameter values, unlike a previous model by May & Robinson (1985;
American Naturalist, 126, 475–494) where none of the three characteristics were included.
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Introduction

Brood parasites include generalists that use a wide range
of hosts, and specialists that use very few. Specialists

are rarer both in species number and abundance within
a species (Rothstein & Robinson 1998; Davies 2000).
Here we present a study of the population dynamics of
a system of three species of South American cowbirds,
two brood parasites, and a host for the former two.

The existence of systems with more than one parasite
attacking the same host raises problems for both eco-
logical and evolutionary stability. If  a specialist and a

Correspondence: M. Ney-Nifle, Tel.: +33 (0)4 72 43 29 29;
Fax: +33 (0)4 72 43 13 88; 
E-mail: ney@biomserv.university-lyon1.fr



2
M. Ney-Nifle et al.

© 2005 British 
Ecological Society, 
Journal of Animal 
Ecology

generalist attack one host, it is of immediate interest to
study whether one parasite may displace the other, or
drive the host and hence the specialist to extinction. The
ecological analysis may also throw light on the evolution
path from generalism to specialization or vice versa.

Specialism at species level occurs in most African
indigobirds (Vidua spp.) that parasitize different spe-
cies of close relative grassfinches (Payne et al. 2000;
Sorenson et al. 2003). Within a species, the common
cuckoo Cuculus canorus is divided into host-specific
races (gentes) that specialize in different hosts (Davies
2000). Females of each race lay a distinctive egg type
that tends to match the host’s egg. Gentes are restricted
to female lineages, with cross-mating by males main-
taining the common cuckoo genetically as one species
(Gibbs et al. 2000). In the brown-headed cowbird Mol-
othrus alter some females use more than one host spe-
cies, both within and between breeding seasons, while
other females parasitize specific host species regardless
of their availability. This raises the possibility that
brown-headed cowbird populations may consist of
combinations of females some of whom are host gen-
eralists and others host specialists (Alderson, Gibbs &
Sealy 1999; Woolfenden et al. 2003).

Brood parasitism poses a threat to some host popu-
lations (Robinson et al. 1995a,b; Trine, Robinson &
Robinson 1998). Generalists are particularly threaten-
ing because their populations may be uncoupled from
that of their relatively uncommon hosts. In contrast,
specialists are less likely to drive hosts to extinction
because their population dynamics are coupled to their
host’s (May & Robinson 1985; Takasu et al. 1993). The
impact of generalist and specialist parasites depends
on the characteristics of the system each forms with
their hosts.

Although host–brood parasite systems have received
less attention than host–parasite or host–parasitoid
systems, several authors have examined the problem
(May & Robinson 1985; Takasu et al. 1993; Haraguchi
& Seno 1995; Grzybowski & Pease 1999; Woodworth
1999). Work on systems formed by a host, a generalist,
and a specialist parasitoid has shown that the conditions
for the persistence of these systems are very restricted
(Wilson, Hassell & Godfray 1996). Whether this applies
for systems formed by brood parasites and their hosts
needs yet to be explored.

The topic is particularly timely because some brood
parasites species have expanded their geographical
range (Robinson et al. 1995a; Cruz et al. 1998) and are
attacking new host populations and species. From a
conservation point of view it is crucial to understand
the dynamics of invasions and under which conditions
a parasite persists in a new host or host community
and/or leads to its decline and eventual extinction.

The population dynamics of host–brood parasite
systems were studied in detail by May & Robinson
(1985), who examined generalized and specialized
parasitism in separate models. In their models, the con-
sequences of parasitism for the host population are

given in terms of the probability of parasitism and mor-
tality rates. These authors represented the number of
offspring fledged in parasitized and unparasitized nests
by their average, regardless of the distribution of para-
sitic eggs per nest, and included minimum known biolo-
gical properties of specific brood parasite systems. We
introduce a degree of realistic complexity and develop
new models including a generalized May and Robinson
model that combines both parasitic species, using these
extended models to test for the robustness of May and
Robinson’s predictions.

Our system is formed by the shiny cowbird Molothrus
bonariensis, the screaming cowbird M. rufoaxillaris,
and the nonparasitic bay-winged cowbird Agelaiodes
badius. Note that A. badius has been treated as a species
of Molothrus until recently (Lanyon 1992; Lanyon &
Omland 1999). Shiny cowbirds parasitize at least 214
species (Ortega 1998), while screaming cowbirds para-
sitize almost exclusively the bay-winged cowbird, which
is also parasitized by shiny cowbirds (Fraga 1998). This
system has characteristics that can be expected to influ-
ence population dynamics. We pay attention to the
following facts: (i) females lay at most one egg per day;
(ii) when the total clutch (host plus parasite) exceeds a
maximum, the host deserts (Fraga 1998); and (iii) para-
sites peck and puncture host eggs (Fraga 1998). These
properties are not rare: they are present in most avian
host–brood parasite systems. We study the importance
of these properties by confronting our model to the
model of May & Robinson (1985) that does not include
them. We also study the persistence of a host species
that is attacked by two parasitic species by comparing
the behaviour of a three-species model with the host–
specialist model.

A cowbird community: generalist–specialist–host

The bay-winged cowbird (the host) occupies regions of
central and southern South America. The screaming
cowbird (the specialist) overlaps extensively with the
host, while the shiny cowbird (the generalist) overlaps
with both species everywhere (Fraga 1998; Ortega 1998).

Bay-winged cowbirds breed from late October to
mid March (Fraga 1998). Their breeding season over-
laps totally with that of the specialist, but only partially
with the generalist, which breeds from late September
to late January (Ortega 1998).

Fraga (1998) found that the majority of bay-winged
cowbird nests in his study area were parasitized by
screaming cowbirds while less than 25% were parasitized
by shiny cowbirds (see also Hoy & Ottow 1964; Mason
1980), and that more than 80% of the nests were multiply
parasitized. There is no evidence for departures from
randomness in the distribution of parasitic attacks.

Birds take at least a day to produce an egg that if  not
laid cannot be stored. This reduces the maximum number
of eggs laid. Total egg laying also depends on the dura-
tion of the breeding season and the maximum number
of eggs a parasite female can produce in a season.
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Beyond a total (host plus parasite) clutch size of
about eight eggs hosts abandon the nest (Hoy & Ottow
1964; Fraga 1998).

Both screaming and shiny cowbirds puncture host eggs
when they parasitize nests (Fraga 1998; Massoni &
Reboreda 1998; Mermoz & Reboreda 1999). Screaming
cowbirds puncture on average 0·63 host eggs (Fraga
1998) and shiny cowbirds 0·65 host eggs, per parasitic
event (Massoni & Reboreda 1998; Mermoz & Reboreda
1999). In nests containing eggs of two or three species,
parasitic females peck eggs indiscriminately. However,
because parasitic eggs have a more rounded shape and
a thicker eggshell than host eggs (Spaw & Rower 1987;
Rahn, Curran-Everett & Booth 1988; Mermoz &
Ornelas 2004) they have a lower probability of punc-
ture (Mermoz et al. 1999). We assume that the number
of parasite eggs lost by punctures was negligible.

Population dynamics model

We consider the density of the generalist constant
(henceforth noted G ). This is justified because the gen-
eralist attacks many species, and hence its density is not
coupled to that of any specific host. We do not include
density dependence on the host population in order to
highlight the influences of the interactions with other
species. This is further justified because the impact of
parasitism appears to be extremely strong for this host
(Fraga 1998), probably dominating other regulatory
forces. The dynamics of the system are described by
two equations, one for the number of host females (Nt),

which equals the number of nests, and the other for the
number of specialist females (Pt).

Cowbirds have a relatively discrete reproduction
period, so that their dynamics are naturally described
on a yearly basis. Therefore, the model uses discrete-
time difference equations. It assumes that host females
have one brood each year, and that host females as
well as parasite females hatched in year t become fully
mature in year t + 1. The host and parasite adult mor-
tality rates (µ and ν, respectively) are age-independent.
The survival rate of chicks (from hatching to first year)
in unparasitized nests (s) is assumed to be independent
of their own number. Similarly, the survival rates of
host chicks in parasitized nests (s′ ) and of the specialist
chicks (sp) are independent of the nest mates. Survival
for the host and the parasite during the first year is
much lower than for subsequent years (see Table 1).

The model assumes that a parasitic event, also called
a nest attack, always results in the laying of a parasitic
egg in the nest, and may be accompanied by a puncture
with a specified probability. Both parasitic species dis-
tribute attacks at random and independently of each
other. The probability that a nest is attacked r times by
each of the parasite species is given by a Poisson distri-
bution with mean λ or λG, respectively, the mean
number of attacks by specialist and generalist. λ = Na/
Nt, where Na is the total number of specialist attacks.

Females cannot lay more than one egg in a day and
T eggs per season. This can be taken into account by
assuming that the number of attacks per female para-
site follows a type II functional response (Hassell &

Table 1. Notation and some values of parameters that come into play in the model developed in this paper (Fraga 1998)

Host parameters
s Survival from hatching to first year 0·39 (unparasitized nests)
s′ 0·34 (parasitized nests)
b Number of host eggs at the time of hatching 3·75 (unparasitized nests)
b′ 2 (parasitized nests)
σ Number of female hosts reared to reproductive
σ′ adulthood σ = (1/2)sb, σ′ = (1/2)s′b′
µ Adult probability of dying during the year 0·24
DA Lifetime of a nest available for parasitism ≤ 16 days
DS Duration of the breeding season 120 days
x Fraction of nests in laying-period among available nests ≤ 0·25

Specialist parasite parameters
T Number of eggs produced each year by one female parasite Presumably in [20–50]
sp Survival of parasite chicks from hatching to first year 0·275
p Number of parasitic eggs in a nest 2·54
σp Number of female parasites reared to reproductive adulthood
ν Adult probability of dying during the year 0·62–0·84
t Egg-production time in days 1
Pa(0) = e–λ Probability that a nest escapes parasitism 0·2
a Searching efficiency and  A ≡ DA/DS a is unknown
A

Generalist parasite parameters
G Population density Unknown

Probability that a nest escapes parasitism 0·76
TG Number of eggs laid each year in nests of the host under consideration unknown
aG Searching efficiency and AG ≡ (aGDA)/DS aG is unknown
AG

e G−λ
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May 1973) in which the traditional handling time term
represents the time to mature an egg (tm)

eqn 1

DS is the duration of the breeding season (in days).
Each nest is available for parasitism (in its laying and
incubation period) for DA days, so that there are in total
NDA/DS nests available for parasitism each day. Hence-
forth tm will be set either to 1 (day) or to 0 (representing
a case in which there is no limit to egg production).
Finally, a is the searching efficiency of the parasite.

An expression similar to eqn 1 is used for the gener-
alist with aG being the searching efficiency and TG being
the number of eggs produced by a generalist female laid
in nests of the host under consideration. In the follow-
ing, we use

G ≡ TG G eqn 2

where G is the total number of eggs laid in host nests by
the generalist population. The fact that the breeding season
of host and parasite may not overlap completely (Table 1),
can be taken into account within this parameter com-
bination. G increases with the overlap of seasons.

Whenever the total number of eggs in a nest exceeds
MBS (Maximum Brood Size), the nest is deserted, and
deserting parents do not re-nest (see the section on the
impact of the generalist).

At each attack, the parasite female punctures or
removes a host egg with frequency Pun.

Table 1 lists symbols and their meaning. The dynamics
of host and specialist in the presence of a generalist is
described by the following equations

The equation for the number of nests at year t + 1 (first
equation in eqn 3) results from the number of nests at
year t, subtracting the adult females that died during
the year and adding yearling females. The latter are
described by the last four terms in this equation that
correspond to yearling females emerging from nests that
have: (i) not been attacked; (ii) been attacked exclusively
by the specialist; (iii) been attacked exclusively by the
generalist; and (iv) been attacked by both parasites.
Each of the four terms is the product of the sex ratio
(1 : 2), the survival rates of the chicks, and the number
of chicks hatching weighted by the probability that the
nest be parasitized and not deserted. The joint probability
that the nest is parasitized and not deserted is given by
functions g(λ, λG), gG(λ, λG), and g(λ, λG), respectively,
for the last three categories of nests, see (ii) to (iv)
above. In fact gG(λ, λG) = g(λG, λ) as generalist and
specialist parasites are assumed to have identical par-
asitic behaviour.

The number of specialist females at year t + 1 is the
sum of the number of adults that survive the year plus
the female yearlings from nests attacked exclusively by
the specialist and from nests attacked by both parasites
(second equation in eqn 3). The functions f (λ, λG) and
ƒ(λ, λG) represent, respectively, the number of specialist
eggs hatching in the latter two categories of nests
weighted by the probability that the nest be parasitized
and not deserted. Finally, x is the fraction of available
nests in their laying period.

We now address in detail the four functions deter-
mining the joint probability that the nest is parasitized
and not deserted. In a nest that received r attacks by the
specialist and q by the generalist, the total number of
eggs is the sum of b − (r + q) Pun host eggs plus r + q
parasitic eggs. When all host eggs have been punctured,
there remain r + q eggs in the nest. Whenever MBS is
exceeded the brood is lost. The function f and g give the
number of host and specialist chicks, respectively. As
already stated, r and q are drawn from independent
Poisson distributions. This yields

eqn 4

where U(x) = 1 if  x positive, 0 otherwise expresses the
MBS condition, and Θ(x) = x if  x positive, 0 otherwise
expresses the puncture effect.

We now introduce a generalized version of the May and
Robinson model where specialist and generalist host
uses are combined into a single set of equations. These
authors assumed that each parasitized nest gives rise to
a fixed number of hosts (b′) and adult parasites (p′) in the
next generation, independently of the number of attacks.

eqn 5

Note that here neither the puncture effect nor nest
desertion are included, but this new model differs from
the Pun→0, MBS→∞ limit of eqn 4 in the fact that the
number of chicks reared to maturity is now set to a con-
stant. Substituting eqn 5, eqn 3 simplifies to:

eqn 6
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where σ = (1/2)sb, σ′ = (1/2)s′b′ and  σp = (1/2)spp (see
Table 1 for notations). May & Robinson (1985) studied
this model in two particular cases, i.e. when one or the
other parasite is not present in the system (note that in
their notations, sb = γ, spp = Γ, s′b′ = γ ′ and x = 1).

Impact of a generalist on a host–specialist 
community

Does the presence of a generalist parasite change the
conditions of stability of the host–specialist system? To
answer this question, the stability boundaries of the
host–specialist system (eqn 3 with G = 0) were com-
pared with those of the three-species system (G > 0),
mainly numerically by iterating eqn 3. Stability crite-
ria are computed in the Appendix. We present most of
the model’s results as stability boundaries in terms of µ
and s (the host’s survival to first year and mortality
rate), which have a crucial influence on stability. Simi-
lar conclusions to those presented here could have been
drawn from a plot in the (µ, s′)-plane. Stability plots for
various µ- and s-values were generated keeping the
other parameters constant. Steady states were usually
rapidly reached (t ≈ 100). In some cases, the simula-
tions resulted in stable limit cycles.

Figure 1 shows the stability boundaries for T = 50
(the largest realistic value for the specialist cowbird
species), and G = 0 (i.e. in the absence of the generalist)
or 20 eggs laid by the generalist in host nests (other

parameter values as in Table 2). In the case with G = 0,
we show the region of small-amplitude limit cycles
defined arbitrarily as the region where both popula-
tions oscillate at a stable amplitude smaller than 100
individuals. This region can be combined with the
stable equilibrium region when studying the persistence
of a real biological system. Then the persistence of the
three-species system occurs for µ broadly in [0·1; 0·45]
and s in [0·34; 0·5]. These are realistic values for the
cowbird system (Table 1). Further simulations have
shown that the conditions for coexistence shrink if
MBS or Pun increases or if  T decreases.

For comparison, Fig. 2 shows the stability bound-
aries for a simplified model excluding nest desertion,
egg puncture and egg-maturation time (MBS = ∞, Pun =
0, and tm = 0). This is in fact the generalized May &
Robinson model (1985) of eqn 6. We ran the model
with G = 0, 5, or 20. As G increases from 0 to 5 the stab-
ility boundary is displaced towards larger s. Increasing
generalist parasitism further has a dramatic impact
on coexistence compared with the previous model,

Fig. 1. Conditions for coexistence of host and specialist
parasite (thin line) and host, specialist and generalist parasites
(G = 20, thick line). This is the result of numerical iteration of
eqn 3 with parameter values of Table 2. The x-axis is the
survival of host chicks to maturity in unparasitized nests. This
cannot be lower than the corresponding survival rate in
parasitized nests, namely 0·34. There is only a small region of
stability delimited by the two thin lines that gets even smaller
when generalist parasites come into play (thick lines). At low
µ or high s, both host and specialist parasite populations grow
exponentially. At high µ they both go extinct. Between these
two extremes, as mortality increases and s stays lower than
0·78, the system goes from the stability region to a region of
small and then large stable limit cycles. This region is shown
on the figure in case with G = 0.

Table 2. Parameter values used in numerical simulations
unless otherwise specified

A = AG 0·2
sp 0·27
s′ 0·34
b 4
b′ 2
p 2·54
x 0·2
ν 0·7
Pun 0·6
MBS 7
T 50
tm 1

Fig. 2. The May and Robinson model leads to a region of
stable coexistence of host and specialist parasite lying between
the lower horizontal line (µ = s = 0·34) and the thinner line. In
presence of the generalist parasite the lower bound does not
change, but the upper bound moves right and down, see the
intermediate line G = 5. For G = 20 (thicker line) coexistence is
hardly possible and the specialist and host populations are
driven to extinction by the generalist parasite.
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reducing the stability region to a very small area. Under
this model, stability is impossible for G > 20 eggs.

Parasitic cowbirds have a very high fecundity. Scott
& Ankney (1980) estimated that the annual fecundity
of brown-headed cowbirds was 40 eggs (but see Alderson
et al. 1999; Woolfenden et al. 2003). Similarly, Kattan
(1993) estimated that shiny cowbirds could lay up
to 120 eggs during the breeding season, but his study
was conducted in the tropics, where the breeding
season is twice as long as in temperate regions. We
assumed that values for the number of eggs laid by the
specialist female (T ) were in the range of  20–50 eggs.
In our model (Fig. 1), apart from the largest values in
this interval, the three-species system cannot persist
(simulations give a lower limit of 39 eggs). Moreover, the
stability is restricted to a rather limited range of µ- and
s-values; the smaller T, the smaller this range.

Consider now a population of specialist parasites
that lay T = 50 eggs per female each year and a popu-
lation of generalist parasites that lay G = TGG = 3·8
eggs each year. The latter is fixed at a low value that
leads to a percentage of host nests parasitized by the
generalist of 25%, which is what Fraga (1998) observed
for cowbirds in natural conditions (Table 1). The most
important result is that the stability diagram obtained
by simulation differs little from Fig. 1 when G = 0. Fur-
thermore, the resulting percentage of host nests para-
sitized by the specialist is 98·5% (as observed for the
cowbird system by Fraga 1998). The simulation pre-
dicts that the fraction of over-crowded nests that are
deserted is 0·03, and thus the number of successful
nests per host female is very close to one. This suggests
that further assumptions on the occurrence of second
nest attempt would not have a large impact on stability.

We have shown in this section that the higher the gen-
eralist parasitism (G ), the more restrictive the conditions
of persistence of the community. Generalist parasitism
soon reaches a level at which the host and the specialist
are driven to extinction whatever their parameters.
This occurs when the generalist lays a total of 36 eggs or
more (when a single specialist female lays up to 50 eggs),
according to our simulation, to be compared with 20
eggs when none of the three factors under consideration
in this paper are included. The generalist parasite
population persists in any case as it attacks other hosts.
Note that there is no constraint on invasions of the host–
specialist community by a generalist, because the gen-
eralist population density does not depend on the two
others. The three-species system resulting from such an
invasion persists or not depending on parameter values.
In our model, each of the three factors, namely egg-
maturation time, brood size limitation, and egg puncture,
decreases the impact of generalist parasitism.

Invasion of a specialist into a host–generalist 
community

So far we gave priority to the specialist–host system and
examined how a generalist alters the resulting conditions

for stability. Now we turn to the opposite question:
given a two-species system formed by a generalist and
one of its hosts, can a specialist expanding its range
from a region where it survives in sympatry with the
host join in and coexist with the previous two species?

   ‒ 


The critical level of generalist parasitism that a host
population can withstand before being driven to extinc-
tion can easily be computed. Recall that in the absence
of a specialist parasite the model is described by

eqn 7

where F(Nt) is the host reproductive rate. Note that
F(Nt) depends on Nt through λG. Below a critical level
of generalist parasitism, the host grows exponentially,
and above this level it is driven to extinction. The crit-
ical level of generalist parasitism can be expressed
either as the number of eggs a generalist female lays in
the host nests, or as a probability of attack .
[pG]critical and [G ]critical can be plotted as functions of adult
host mortality µ (Fig. 3). It is interesting to compare
these results with the basic host–generalist model with no
egg puncture, and no limitations in either egg-maturation
time or brood size (May & Robinson 1985). Figure 3
illustrates that host population persistence depends on
generalist parasitism in both cases but it does so in a less
sensitive way when more biological realism is included.

 

The goal of this section is to analyse the outcome of an
invasion of a host–generalist system by the specialist.
This could be assessed by setting that the host population
is at equilibrium in the presence of the generalist, and
that invading specialists arrive in very low numbers.
An invasion can be considered successful whenever
the specialists increase in numbers, i.e. their growth rate
is larger than unity (Wilson et al. 1996). In models
where there is no preinvasion equilibrium host density,
invasion succeeds when

eqn 8

In a constant environment, i.e. in absence of stochasti-
city, inequality 8 amounts to checking that the long-term
growth rate Γ−1(ln PΓ − ln P0) takes a finite positive value
as time, Γ, approaches infinity (e.g. in Metz, Nisbet &
Geritz 1992).

We first study invasion with neither egg punctures
nor nest desertions included (eqn A12). This shows
the impact of the biological process that, according to
the results in the previous section, has the strongest
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impact on the persistence of  the system namely, egg-
maturation time (letting tm = 1). Linearizing the equa-
tions for very small Pt , one gets

eqn 9

We have shown earlier that in the absence of specialists
and above the critical level of generalist parasitism (ine-
quality A14), host density crashes, and that below this
level it grows without bounds. This unchecked growth
depends on excluding density dependence of the host
population other than the effect of specialist parasitism,
that is the variable we wish to explore. The expression
in eqn 9 tends to 1 − ν when the host density tends to
zero and to 1 − ν + xσpT when the host density in-
creases without bounds. Combining these limits and
inequality 8 shows that the host–generalist system can-
not be invaded above the critical level of generalist
parasitism, and that invasion succeeds below this level
if  the reproductive opportunities for the specialist,
xσpT are high enough (recall that x is the fraction of
nests available for reproduction, σp. is the number of
chicks reared to adulthood, and T is the number of eggs
produced per female each year).

The same tendency according to parasite mortality
and reproductive rate is obtained including the three
factors described earlier. This result is obtained by
computing condition 9 numerically. First some host
density dependence is added so that the host popula-
tion does not rise without bound if  the specialist goes
extinct. Assuming that density-dependent mortality
acts at the end of the season at a rate δ, the equation for
the host population (eqn 7) becomes

Nt+1 = NtF(Nt)Exp(−δNt) eqn 10

with F(Nt) in eqn 7. We use δ = 10−10 (i.e. very large
carrying capacity). The specialist is inoculated at very
low population level (e.g. P0 = 10−8) to a host population
in equilibrium. The coupled equations for host and
specialist parasites are iterated for at most 10 000 years.
The density-dependent mortality rate does not change
the main conclusions on invasion (comparing δ = 0 and
δ = 10−10) and holds for larger values of δ. The intro-
duction of the density-dependent mortality, δ, has the
trivial effect of stabilizing a host population that would
otherwise grow exponentially, at the carrying capacity.
For these reasons this factor has not been included
sooner in the model.

Numerical results show that the host–generalist
system can be invaded by the specialist and the three-
species community is dynamically stable. Figure 4
shows the region of interest (lower left quarter of
Fig. 1) except that the boundary in the host–generalist
system (between host expansion and host extinction) is
added. Similarly, our model implies that the bound-
ary depends little on the generalist parasite efficiency
(more eggs laid, G, or larger searching efficiency, aG), in
the region of parameter space of interest.

To conclude, the invasion region by the specialist
parasite coincides with the stability region of  three-
species community. This region is small, which suggests
that the establishment of such a community as observed
in the Molothrus cowbirds is a rare event.

Discussion

We analysed the dynamics of a host–brood parasite
community formed by a generalist and a specialist
brood parasite with a host parasitized by both. We
include realistic features of a known system that seem
intuitively to be important for population dynamics.

Fig. 3. The critical parasitism level G and the critical
probability of parasitism, pG (inset) as a function of adult host
mortality µ. Critical means that above this threshold the host
falls to extinction. Upper curves (thick lines) are obtained
numerically from our model, which is compared with the May
and Robinson model (lower thin lines calculated analytically).
For the latter, the quantities plotted here are not defined when
mortality is lower than survival in parasitized nests (0·34), a
limitation that does not exist in our model. If  host mortality
rate is, say, 0·4 the critical level of generalist parasitism is 18
eggs laid (and only five in May & Robinson (1985); our model
hence predicts a relatively low impact of the generalist on the
host community.
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Fig. 4. Conditions for invasion and stability of communities
consisting of indicated combinations of host (H ), specialist
parasite (S ), and generalist parasite (G ). This is the result of
numerical iteration of eqn 3 and 4 with parameter values of
Table 2. The dotted line is the boundary above which the host
is driven to extinction by the generalist parasite.
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We are conscious that perhaps the most important con-
tribution of theoretical modelling to biological think-
ing is extracting general principles from streamlined,
simple models of great generality, and that adding
complexity has a cost in terms of the heuristic contri-
bution models make, but we trade this cost off  against
working with models that cannot make reliable predic-
tions because crucial constraints of the real systems are
missing.

We used as a benchmark a series of models devel-
oped by May & Robinson (1985), and built more com-
plex models. The features of the real system that we
added are: (i) parasite females produce no more than
one egg per day; (ii) parasite females puncture (or
remove) host eggs; and (iii) hosts desert overcrowded
nests. While May and Robinson’s model did not
include nest abandonment and egg puncturing expli-
citly, their model was sensitive to these two parameters
through their impact on survival data. In the present
paper, other potentially significant properties were
ignored. Among these, we assumed that the generalist
population is entirely decoupled of the other two and
did not implement a safe fraction of the host’s nests in
the temporal refuge resulting from nonoverlapping of
reproductive seasons.

Our main findings were that (1) persistence is much
restricted when the three features mentioned above are
included in the model, the influence of the specialist’s
maximum rate of egg production and maximum sea-
sonal fecundity being more important in constraining
the conditions for persistence than the other two (M.
Ney-Nifle unpublished). As these aspects had been
ignored by pre-existent brood parasitism models, the
dynamics for invasions and stability suggested by pre-
vious models do not give an accurate picture. It would
be impossible to understand, and hence predict and
intervene in ecological invasions such as those cur-
rently on course by shiny cowbirds in North America
using models that exclude these crucial properties.

Comparing the three-species system with a two-
species specialist–host model shows that (2) normally,
the invading generalist parasite has a moderate impact
on the coexistence of host and specialist, but at high
density of the generalist, specialist and host can be driven
to extinction. The analysis of the invasion of the host–
generalist system by the specialist suggests that (3)
invasion is successful only in the (restricted) stability
boundaries of the three-species system. The dynamics
of invasions were examined by comparing the three-
species system with the two possible parasite–host
systems. The results are intuitively obvious: Introduction
of a generalist has only moderate effect on the persistence
of  a specialist–host system. When instead a specialist
is introduced to a generalist–host system, the specialist
often does not prosper, unless all the parameters are
within the limited region where the three-species system
is stable.

Interestingly, the range of parameter values where
the coexistence of the three species is possible includes

those that have been measured in field studies on cow-
birds (Fraga 1998). The system is only stable in a small
region. This suggests that the real system may be very
vulnerable to perturbations: particularly any factor
affecting host chick survivorship in unparasitized nests
or host adult mortality could destabilize the system
leading to local extinctions.

A factor that determines the persistence of systems,
including the specialist, is the number of eggs that females
can lay in available nests. Two parameters control this
number: rate of egg production (1/tm) and maximum
seasonal fecundity (T). Together these parameters set
the asymptote of the type II functional response. The
destabilizing influence of type II functional responses
in host–parasitoid systems is well known (Hassell &
May 1973). Nevertheless, it is customary to assume
that the asymptote is sufficiently high as to allow
simplifying the models by assuming linear functional
responses. The present study suggests that in brood
parasitism, for realistic values of T and tm the destabil-
izing influence of type II functional responses could be
so important that ignoring it would lead to misleading
results.

Our model includes some simplifications on the bio-
logy of the three cowbird species. First, in most of this
work we ignored intraspecific density-dependent pro-
cesses. Clearly, the inclusion of such factors would
expand the stability boundaries of the model. Density
dependence was ignored on the grounds that little
information is available on intraspecific competition in
cowbirds and that including it would obscure the influ-
ence of interspecific interactions. The fact that inde-
pendently measured field estimations of parameter
values fall inside the stability boundaries suggests that
intraspecific competition is not a major feature of the
three-species interaction. Secondly, we simplified the
egg puncture process by assuming that, when visiting
an already parasitized nest, parasite females puncture
only host eggs. In fact, parasites are known sometimes
to peck parasite eggs (Fraga 1998; Mermoz et al. 1999).
The inclusion of punctures on parasite eggs would
result in an increase in the number of host eggs and a
decrease in the number of specialist and generalist eggs.
However, most likely, this will have a moderate influ-
ence in the dynamics of the system because: (i) while
host eggs are punctured in all parasitized nests, parasite
eggs are only affected in multiply parasitized nests, and
(ii) parasite eggs have a thicker eggshell than host eggs
resulting in a lower probability of being destroyed
(Mermoz et al. 1999). We also assumed that hosts
deserting an over-crowded nest do not re-nest. In natural
conditions this is not always the case, especially when
nest desertion occurs early in the breeding season. This
difference between the real system and the model assump-
tions is also likely to have a moderate impact. In our
model, the predicted frequency with which nests were
abandoned was quite low. On the other hand, our model
did not consider nest predation. This over-estimation
of nest success should counterbalance, at least partially,
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the under-estimation incurred by ignoring re-nesting.
Finally, we assumed that all the females and males
breed. This assumption could be invalid because it is
known that this host has individuals that do not breed
and help with parental duties to reproductive pairs
(‘helpers at the nest’, Fraga 1991). There is little infor-
mation about the sex and proportion of helpers in the
host population (Fraga 1991). One of the favoured
hypotheses for explaining helping behaviour is that
helpers do not breed independently because there
are no territories available (habitat saturation,
Hatchwell & Komdeur 2000). If  this is also the case in
the host, our assumption holds for low population
densities.

Cowbird species range from partial specialists to
broad generalists. This has broad consequences for the
establishment of two-species systems: while the stabil-
ity characteristics of the host–generalist system will
depend mostly on the characteristics of the generalist
species, stable host–specialist systems are only possible
for a restricted set of parameter values. Invasion of the
host–generalist system by the specialist is only possible
under the restricted conditions that lead to the stability
of the three-species systems. Invasion by a generalist is
always possible, but outside the three-species stability
boundaries it will lead to the instability of  the host–
specialist system. This might have little impact on the
generalist population while leading the other two species
to extinction.

The model presented here can be applied to the study
of a three-species community consisting of two gener-
alist brood parasites sharing a host. This situation has
recently arisen in North America, where generalist
brown-headed cowbirds have started to compete for
the use of  hosts with the invading generalist shiny
cowbird (Cruz et al. 1998). According to our model, the
crucial parameter for coexistence is the sum of the
number of eggs laid by each parasite species in the host
nests that they share. The larger this number, the more
likely the extinction of  the host. Because the impact
of  the different generalist parasite species on host
population is additive in the model, the arrival of a new
generalist parasite will have a strong and immediate
impact on host populations.
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Appendix

The first section of  this Appendix deals with two-
species (specialist and host) communities and the
second with three species (specialist, generalist, and
host) communities.

‒ 

Throughout this study we use the two-species model pro-
posed by May & Robinson (1985; our eqn 6) as a refer-
ence, and study the effects of  adding three different
realistic traits that are known to apply in real communities.

The two-species system is obtained by setting the
influence of the generalist as nil (G = 0) in eqn 3. The
resulting simplification is shown below.

eqn A1

(see notation of Table 1) where functions g and f (eqn 4)
are

eqn A2

First we proceed to the stability analysis in two steps by
getting the equilibrium points and then the conditions
for stability against small (linear) perturbations. In
parallel to these analytical derivations, we also per-
formed extensive numerical studies and verified that we

get the same stability diagram. Calculations were done
with the software Mathematica (Wolfram 1999).

Stability when parasites cannot lay more than an egg a day
Setting {N* = Nt+1 = Nt;P* = Pt+1 = Pt } in eqn A1 with,

eqn A3·1

where

eqn A3·2

one gets

eqn A4

and

eqn A5

It must be noted that the necessary condition 0 < e–λ

< 1, imposes

σ′ < µ < σ eqn A6

where we used the fact that the number of host chicks
reared to maturity must be lower in an parasitized than
in a unparasitized nest, i.e. σ′ < σ. The inequalities in
eqn A6 are necessary at equilibrium because if  the
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right-hand side of  (eqn A6) is violated, the host’s
reproductive rate in unparasitized nests is lower than
the mortality rate, and the population collapses even
in the absence of  parasitism, while if  the left side of
(eqn A6) is not verified mortality rate is lower than the
reproductive rate in parasitized nests, and the host
population grows without bounds.

Following standard techniques (Edelstein-Keshet 1988),
we now compute the four elements of the jacobian
matrix, J, after linearization of eqn A1. Stability condi-
tions are given by 1 > Det(J) > Trace(J) − 1, which yields

eqn A7

When tm = 0 in eqn A7, one recovers the May and Rob-
inson model (1985), for which the second inequality is
trivially satisfied. The only parameters involved in the
remaining stability condition are µ, σ, and σ′. In the
general case, in which the unrealistic ability of gener-
ating eggs instantaneously is excluded and then tm > 0,
there are additional parameters involved, although the
parasite searching efficiency A is notably absent. eqn
A7 show that there is a critical value of the parasite’s
total fecundity, T, below which none of the inequalities
are verified and hence equilibrium is not possible. The
stability frontiers in the (µ, σ)-plane are obtained from the
inequalities in eqn A6 and A7, the latter being solved
numerically when no analytical expressions are available.

Stability when brood size is limited or when parasites
puncture host eggs In this case the equilibrium state P*
is the solution of the first equation in A1 (after N* is
eliminated), that is,

2µ = σe−ATP + σ′g(ATP) eqn A8

which can be solved numerically.

The stability conditions resulting from the inequal-
ities 1 > Det(J) > Trace(J) − 1 lead to the results given
in the text.

 ‒‒ 

For general forms of the functions f and g (eqn 4) there
are no analytical solutions at equilibrium. Therefore the
two coupled equations have to be iterated numerically.
The stability boundaries, however, can be inferred
analytically in a particular case that is used in the section
on invasion of  the host–generalist community by a
specialist parasite.

The stability of  the three-species system can also
be explored taking into account the constraint in
egg-production time but leaving out puncture and
limited brood size factors. In this case, the system
simplifies to

eqn A9

where λ and λG are functions of Nt and Pt (see eqn A4)
and

eqn A10

Letting Nt = N* and Pt = P* in eqn A9 in order to derive
the equilibrium points, leads to eqn A8 (obtained in
absence of generalist parasitism) with

eqn A11

The second equation in A9 can be solved in N* numer-
ically. The first equation in A9 is solved in P* by
straightforward substitution of the solution for N*.
The stability conditions (see above) are then checked
numerically.
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