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Abstract
Shiny and screaming cowbirds are avian interspecific brood parasites that locate and prospect host nests in daylight and 
return from one to several days later to lay an egg during the pre-dawn twilight. Thus, during nest location and prospecting, 
both location information and visual features are available, but the latter become less salient in the low-light conditions when 
the nests are visited for laying. This raises the question of how these different sources of information interact, and whether 
this reflects different behavioural specializations across sexes. Differences are expected, because in shiny cowbirds, females 
act alone, but in screaming cowbirds, both sexes make exploratory and laying nest visits together. We trained females and 
males of shiny and screaming cowbird to locate a food source signalled by both colour and position (cues associated), and 
evaluated performance after displacing the colour cue to make it misleading (cues dissociated). There were no sex or species 
differences in acquisition performance while the cues were associated. When the colour cue was relocated, individuals of 
both sexes and species located the food source making fewer visits to non-baited wells than expected by chance, indicating 
that they all retained the position as an informative cue. In this phase, however, shiny cowbird females, but not screaming, 
outperformed conspecific males, visiting fewer non-baited wells before finding the food location and making straighter paths 
in the search. These results are consistent with a greater reliance on spatial memory, as expected from the shiny cowbird 
female’s specialization on nest location behaviour.

Keywords  Brood parasitism · Cognition · Molothrus bonariensis · Molothrus rufoaxillaris · Spatial memory · Spatial 
orientation

Introduction

Interspecific avian brood parasites such as cuckoos and cow-
birds lay eggs in nests of other species, the hosts, which then 
provide care for the parasite’s eggs and chicks (Spottiswoode 
et al. 2012). Unlike birds that build their own nest and there-
fore only need to know its location, brood parasites must first 
locate nests of potential hosts and then return to parasitize 
them at the right time. During the breeding season, individ-
ual cowbirds search for host nests within relatively constant 
areas (Hahn et al. 1999; Scardamaglia and Reboreda 2014). 
After locating a nest, they visit it repeatedly to monitor its 

progress and return to parasitize it during the laying period 
of the host (Scardamaglia et al. 2017). Parasitism (egg lay-
ing) occurs before sunrise (Peer and Sealy 1999; Gloag et al. 
2013; Scardamaglia et al. 2017, 2018), with cowbirds flying 
directly from the roost where they spent the night to the nest 
they are going to parasitize (Scardamaglia et al. 2018). Dur-
ing the rest of the day, they prospect previously located nests 
and search for new ones that they may parasitize the follow-
ing days (Rothstein et al. 1986; De Mársico and Reboreda 
2008; Gloag et al. 2013; Scardamaglia et al. 2017).

This parasitic behaviour makes special demands on infor-
mation processing, which have been labelled ‘book-keep-
ing’ (Clayton et al. 1997), as cowbirds must remember and 
update the location and stage of multiple nests as they pro-
gress in the breeding cycle (i.e., construction, laying, early 
or late incubation). Therefore, when the parasitic female is 
ready for laying an egg, she faces choices among an inven-
tory of multiple potential host nests, each at a different stage, 
and must select the most appropriate nest, flying directly to 
it in the low-visibility, pre-dawn conditions. The navigation 
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cannot be guided by visual local cues respect to the target 
nest because they are not in sight when the parasite leaves 
its roosting site. The demand for memory of the precise 
location and nesting stage of multiple host nests correlates 
with an enlargement of the hippocampus [i.e., a dorsomedial 
forebrain structure which plays an important role in memory 
and spatial orientation (Sherry and MacDougall-Shackleton 
2015)] when this demand is present, namely in the sex (or 
sexes) that locates and prospects host nests: females in the 
brown-headed (Molothrus ater) and shiny (M. bonariensis) 
cowbirds, and females and males in screaming cowbirds (M. 
rufoaxillaris), but only in the reproductive season (Sherry 
et al. 1993; Reboreda et al. 1996; Clayton et al. 1997; Nair-
Roberts et al. 2006; Guigueno et al. 2016). Moreover, adult 
hippocampal neurogenesis is greater in female than in male 
brown-headed cowbirds, but no sex differences are found 
in a non-parasitic related species (Guigueno et al. 2016), 
supporting the hypothesis of hippocampal specialization 
in brood parasitic cowbirds (Guigueno and Sherry 2017; 
Sherry and Guigueno 2019).

Previous studies that examined the association between 
the enlargement of the female hippocampus in cowbirds and 
a better performance of females in solving tasks that demand 
the use of spatial memory have shown somewhat conflict-
ing results (reviewed in Guigueno and Sherry 2017). Shiny 
cowbirds showed no sex differences in the ability to solve 
a task in which they had to learn to find a well baited with 
food whose location remained constant between trials, but 
opposite to the expectation, females learnt to recover food 
faster than males when the bait was signalled by a colour cue 
but not by its position (Astié et al. 1998). Similarly, Astié 
et al. (2015) did not find sex differences during acquisition 
and reversal discrimination learning task using either colour 
or location cues. In the latter study, retention after switch-
ing to extinction was higher in females than males, which is 
consistent with female shiny cowbirds having better long-
term memory than males for both colour and position cues 
(Astié et al. 2015). In brown-headed cowbirds, sex differ-
ences in spatial memory seem to depend on the type of task, 
with females performing better than males on an open field 
spatial delayed matching to sample task in which subjects 
had to move through space and remember a location for 24 h 
(Guigueno et al. 2014), but males performing equal to or 
even better than females on a stationary touchscreen delayed 
matching to sample task in which they had to remember a 
location on a screen for up to 60 s (Guigueno et al. 2015).

As mentioned above, cowbirds locate and prospect host 
nests in daylight and return to parasitize them up to several 
days later under poor visibility at the pre-dawn twilight. 
Thus, during nest searching and prospecting, spatial cues 
(i.e., information from free-standing visual landmarks other 
than the target) and visual cues (i.e., characteristics associ-
ated with the target, such as its colour or shape) are available, 

but visual cues become less salient during parasitic visits 
before sunrise and cannot help in the longer distance naviga-
tion from the roost to the target nest’s location. This poses 
the question of how these different sources of sensory infor-
mation interact and whether there are sex differences in the 
reliance to different kinds of visual information.

In this work, we studied sex differences in the use of spa-
tial and local visual cues in shiny and screaming cowbirds. 
We trained females and males of both species to locate a 
food source with both spatial and colour cues being present 
and evaluated their performance after displacing the colour 
cue but not the location of the food. Sex differences were 
expected in shiny cowbirds, because in this species females 
search, prospect and parasitize host nests alone and have 
a seasonally larger relative hippocampus than males. Any 
sex difference, if present, should be weaker in screaming 
cowbirds, because in this species, both sexes search, pros-
pect and parasitize host nests together, and no differences in 
hippocampus size have been reported.

Materials and methods

Subjects

The subjects were six females and four males of scream-
ing cowbird, Molothrus rufoaxillaris, and six females and 
seven males of shiny cowbird, M. bonariensis. Screaming 
cowbirds were captured using mist nets and walk-in traps at 
Magdalena county, Buenos Aires Province, Argentina (35° 
80′ 80″ S, 57° 82′ 30″ W), and Ciudad Universitaria, Buenos 
Aires city, Argentina (34° 32′ 33″ S 58° 26′ 25″ W), dur-
ing January 2017, while shiny cowbirds were captured at 
Ciudad Universitaria, Buenos Aires city, Argentina during 
August–October 2017. After capture, they were housed in 
wire cages of 120 × 40 × 40 cm (length × width × height) in 
groups of up to three birds per cage. Cages were visually 
but not acoustically isolated. Birds were kept under natural 
light cycle at room temperature (range 18–30 °C) and fed 
with an enriched-vitamin seed mix for canary birds con-
taining canary grass (Phalaris canariensis), flax (Linum 
usitatissimum), and rapeseed (Brassica napus) seeds. They 
also were fed with Tenebrio molitor larvae and pupae 
(three times per week, five insects per bird). Birds were 
maintained in captivity at least 15 days before the start of 
training (shiny cowbirds: 87–97 days, screaming cowbirds: 
15–27 days). During the experiments, food was removed 
from the cages from 05:00–06:00 PM until the start of each 
session at 08:00–09:00 AM the following morning. After 
each experimental session (they ended at 11:30 AM–12:00 
PM), they had access to food ad libitum. The weight of the 
birds remained stable over the course of the experiment.
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Experiments were conducted during the breeding sea-
son of South American cowbirds, in December 2017 (shiny 
cowbirds) and February–March 2017 (screaming cowbirds). 
After we completed the experiments, the birds were released.

Experimental arena and procedures

The experimental arena was a wooden board of 
40 × 40 × 2 cm (length × width × height) with 36 wells of 
1 cm in diameter and 0.5 cm in depth distributed regularly 
in a 6 × 6 array. A sliding wooden disk (2 cm in diameter 
and 0.2 cm of thickness) covered each well. The experi-
ments were conducted in their home cage. Each daily session 
consisted of two trials of 5 min each with an inter-trial inter-
val of 8 min. Before the start of the session, the cage was 
divided into three parts of 40 × 40 × 40 cm. One of the lateral 
parts was used to test the bird, the middle part to keep the 
bird being tested before the first trial and during the inter-
trial interval, and the other lateral to keep the remaining 
cage mates (Fig. 1). Testing order was randomized within 
and between cages. We video-recorded each session using 
a microcamera placed above the experimental arena and 
connected to a PVR recorder (PV-500 ECO, LawMate Int., 
TW).

Birds were trained to retrieve food (millet seeds) from 
the experimental arena following the training scheme 
shown in Table 1. If they failed to retrieve food in one 
session, we repeated the same training scheme in the fol-
lowing session, and if they failed in two consecutive ses-
sions, we went back to the previous stage of the training 
scheme. During the training phase, all disks covering the 
wells were the same colour (light brown). After the birds 
completed the training, we started the following phase in 
which only one well was baited, always in the same posi-
tion for each bird, and identified both by its position and 

by a covering disk of a different colour (red). The position 
of the baited well was randomized across subjects. There-
fore, in this phase, birds could learn to locate food using 
redundant location and colour cues (cues associated). The 
criterion to finish this phase was that the bird retrieved the 
food in three consecutive trials with three or fewer visits 
to non-baited wells. After completing this phase, the spa-
tial and colour cues were dissociated (the food remained 
in the same location, but the red disk varied its location 
randomly).

Data analysis

For each trial, we recorded the latency until the bird retrieved 
the food and the number of visits to non-baited wells before 
finding the food. We considered it a visit if the bird opened 
the well or attempted to move the covering disk even if it 
was a well that the bird had previously touched. Therefore, in 
some trials, the number of visited wells exceeded the number 
of wells in the experimental arena (36). For the phase with 
cues associated, we computed the number of sessions until 
the birds reached our learning criterion. For the first trial 
after the colour and spatial cues were dissociated, we ana-
lysed the number of non-baited wells visited and the latency 
to find the well with food. For this trial, we also calculated 
the straightness index of the path to reach the well with food. 
This index was estimated as the length of a straight line 
between the first well visited and the well with food, divided 
by the observed minimal path length, defined as the sum of 
the linear distances between each consecutive pair of wells 
visited (Benhamou 2004). This index helps to understand 
better how animals move along the arena and if the opened 
wells were close to (shorter path) or far away from (longer 
path) the well with food. This estimate ranges from near 0 
(long and tortuous path) to 1 (the straightest path). If the 
bird went directly to the baited well, the index was assigned 
a value of 1.

Experimental
arena

Experimental
bird

Non-experimental
birds

Fig. 1   Schematic representation of the cage where the birds were 
kept, and the experiments conducted. One of the laterals was used to 
test the bird in the experimental arena (wood board with 36 wells). In 
the middle part, we kept the bird that was tested before the start of the 
session and during the inter-trial interval, while other birds remained 
in the other lateral

Table 1   Scheme used for training shiny and screaming cowbirds to 
retrieve food from the experimental arena

Session Wells 
with 
food

Seeds per 
well

Uncov-
ered 
wells

Semi-
covered 
wells

Covered wells

1 16 2 36 0 0
2 16 2 18 18 0
3 16 2 0 18 18
4 16 2 0 0 36
5 8 5 0 0 36
6 4 10 0 0 36
7 2 20 0 0 36
8 1 40 0 0 36
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Statistical analyses

We analysed each species independently since they were 
tested at different times. We examined differences in the 
number of sessions to reach the learning criterion when 
location and colour cues were associated using general 
linear models (GLM) with negative binomial distribution 
(log link function). Similarly, we used GLM with negative 
binomial distribution to analyse differences in the number 
of non-baited wells visited until reaching the well with food 
during the first trial after the cues were dissociated. We also 
examined differences in the latency and the straightness 
index to reach the well with food using GLM, with gamma 
distribution (inverse link function) to model latencies and 
beta distribution (logit link function) to model indexes. Sex 
was included in all the previous models as a fixed factor. 
We performed GLM using R package glmmTMB (Brooks 
et al. 2017). For each model, we assessed residuals diagnos-
tics by plotting residuals vs. predicted values and checking 
for a non-significant dispersion in the QQ plot of residuals 
using R package DHARMa (Hartig 2020). To evaluate if 
after cues were dissociated birds found the well with food 
visiting fewer non-baited wells that expected by chance, we 
generated 1000 samples with replacement from the set of 
numbers of non-baited wells visited for each species in this 
trial. The sample sizes were the same as the number of indi-
viduals tested in each group. We pooled data from both sexes 
for this test. We calculated the mean of each bootstrapped 
sample and generated a distribution for those mean values. 
We calculated the 95% confidence interval (CI95) of the real 
sample mean as a 0.025–0.975 quantile interval of the boot-
strapped distribution. Finally, we checked if the expected 
value of a negative hypergeometric distribution with the 
same parameters as our experiment (E(X) = µ = 18.5) was 
included in the calculated CI95s. This distribution assumes 
performance by chance and if the calculated CI95s include 
the value 18.5, then we cannot exclude the possibility that 
birds found the baited well by chance. This distribution 
describes a search without replacement, but birds usually re-
visited some wells multiple times. In this case, the expected 
value of the distribution would be 36. We performed all sta-
tistical analyses using R 3.6.3 (R Core Team 2020).

Results

All the birds learnt to find the food when the spatial and 
colour cues were associated. The number of sessions to cri-
terion ranged between 2 and 11 (shiny cowbirds) and 3 and 7 
(screaming cowbirds), with no significant sex differences in 
either species (GLM, shiny cowbirds: p = 0.944; screaming 
cowbirds: p = 0.082) (Fig. 2).

During the first trial after the cues were dissociated, shiny 
cowbird females visited fewer non-baited wells than males 
to find the well with food (GLM, p = 0.03), but there were 
no sex differences in screaming cowbirds (GLM, p = 0.78) 
(Fig. 3a). Shiny cowbird females also followed straighter 
paths than conspecific males to find the well with food 
(GLM, p = 0.04) but these sex differences were not found 
in screaming cowbirds (GLM, p = 0.48) (Fig. 3b). There 
were no sex differences in the latencies to find the baited 
well (GLM, shiny cowbirds: p = 0.831; screaming cowbirds: 
p = 0.189). For both species, the number of non-baited wells 
visited before finding the well with food was lower than 
expected by chance (Bootstrapped CI95, shiny cowbirds: 
3.36–8.46; screaming cowbirds: 3.78–15.78).

As regards the cue preference of birds during the disso-
ciation trial, we did not find a clear tendency as some birds 
touched the colour cue before the spatial cue (shiny cow-
birds: females 4/5, males 4/6; screaming cowbirds: females 
4/6, males 3/4) while the others went directly to the spatial 
cue.

Discussion

We found no sex or species differences in learning to locate 
well with food when it was signalled by colour and position 
cues. When the colour cue was displaced to a misleading 
well, birds of both species visited fewer non-baited wells 
than expected by chance, indicating that they remembered 
the location of the well with food. In this phase, shiny but 
not screaming cowbird females outperformed conspecific 
males, by visiting fewer non-baited wells and making 
straighter paths to the baited well. Our results show a better 
spatial performance by shiny cowbird females than conspe-
cific males, as expected from their specialization on nest 
location behaviour. Our result is consistent with previous 
results by Guigueno et al. (2014) showing that in brown-
headed cowbirds, a species with a similar sex-specific para-
sitic behaviour than shiny cowbirds, females outperformed 
males in a spatial memory task. It is important to note that 
our hypothesis and interpretation, as well as that of Guig-
ueno et al. (2014), assume that food location tasks recruit 
similar cognitive mechanism as that used for remembering 
the location of host nests. This assumption is supported by 
a study of Davies and White (2018) that shows consistency 
in performance in brown-headed cowbirds females across 
nest-prospecting and foraging tasks.

Avian brood parasites show highly specialised nest 
searching behaviour. In cowbirds, this behaviour involves 
identifying suitable host nests as potential targets for para-
sitism under daylight and returning to lay their eggs one or 
several days later in the pre-dawn twilight, flying directly to 
it in the low visibility, pre-dawn conditions (Peer and Sealy 
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1999; Gloag et al. 2013; Scardamaglia et al. 2017, 2018). 
Also, at the time of parasitism, cowbirds must decide among 
multiple potential host nests at different stages of the nest-
ing cycle and select the most appropriate one to parasitize 
it. To accomplish this, female cowbirds prospect host nests 
and track information of nest progress, which allows them to 
time parasitism with host laying (Scardamaglia et al. 2017; 
White 2019). In addition, female cowbirds that lack informa-
tion about nest availability can eavesdrop on nest selection 
decisions of other females (Gloag et al. 2013; White et al. 
2017).

Since cowbird parasitism occurs during pre-dawn, under 
very low visibility conditions, flying from the roosting site 
to the host nest must be guided by memory, rather than by 
direct sensory detection of the target nest. Although colour 
visual cues may serve to identify a host nest while pros-
pecting in daytime, they cannot be used as beacons to reach 
target nests at laying time. The most plausible scenario is 
that upon discovery of a suitable target, the prospecting bird 
places its finding in a pre-existent cognitively represented 
map (O’Keefe and Nadel 1978) of its home range, ready for 

later use, and at laying time widely distributed landmarks 
allow the subject to navigate towards the position of its 
target using spatial memory. This contrasts with locating a 
target using visual sensory stimuli as navigational beacons 
(Gray et al. 2005; Pearce et al. 2006; Kelly 2010; Feenders 
and Smulders 2011; Hornsby et al. 2014; Hurly et al. 2014; 
Pritchard et al. 2015; see Gould et al. 2010, for a review).

Sex differences in the use of spatial cues have been exten-
sively studied in mammals (i.e., Gaulin and FitzGerald 
1986, 1989; Gaulin et al. 1990; Galea et al. 1996; Bettis and 
Jacobs 2013; see Coluccia and Louse 2004, for a review). As 
regards birds, several studies investigated the preferences for 
the use of spatial or visual cues in species with high spatial 
memory demands, like food-storing or nectar-feeding birds, 
and found that these species prefer to use spatial over colour 
cues (Brodbeck 1994; Clayton and Krebs 1994; Brodbeck 
and Shettleworth 1995; Hurly and Healy 1996, 2002; but see 
Fenders and Smulders 2011). In contrast, species which do 
not have high spatial memory demands do not show a clear 
pattern in the use of both cue types (Brodbeck 1994; Clayton 
and Krebs 1994; Mayer and Bischof 2012).
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Fig. 2   Number of non-baited wells visited before finding the baited 
well. Left: shiny cowbird females (a) and males (b); right: scream-
ing cowbirds females (c), and males (d) during learning to find a well 
with food. The position of the well did not change between trials and 
was indicated by a colour cue. Each point represents an individual’s 

mean across two consecutive trials. The x-axis indicates blocks pre-
ceding the trial when spatial and colour cues were dissociated (day 
0). For comparative purposes, data from days −  11 to −  7 are not 
shown. Boxplots show medians, interquartiles and ranges



	 Animal Cognition

1 3

Sex differences in the preference for the use of spatial 
or colour cues within bird species have been less investi-
gated (i.e., Vallortigara 1996; Hodgson and Healy 2005). 
Vallortigara (1996) did not find sex differences in chicks 
(Gallus gallus domesticus) in a learning task when colour 
and position cues were associated, but when cues were dis-
sociated, females performed better in the colour-learning 
task and males performed better in the spatial-learning task. 
In contrast, Hodgson and Healy (2005) find that females and 
males of great tit (Parus major) that learnt to find food with 
colour and position cues associated preferred to follow the 
spatial cue when they were dissociated and did not show sex 
differences in cue use.

Our results show that the use of spatial and colour cues 
by shiny and screaming cowbirds is flexible, as some indi-
viduals inspected the well associated with the colour cue 

first, and then searched using the location cue, while oth-
ers went directly to the well with food using location and 
dismissing the displaced colour cue. Similarly, LaDage 
et al. (2009) found that food caching mountain chicka-
dees (Poecile gambeli) that had learnt to find food in a 
feeder with spatial and colour cues associated, when col-
our was dissociated from the spatial location, inspected 
feeders associated with the correct colour first and then 
visited the correct spatial locations. These results along 
with other studies (Healy 1995; Healy and Krebs 1992a, 
1992b; Hodgson and Healy 2005; Morandi-Raikova et al. 
2020) are not consistent with the view (Brodbeck 1994; 
Clayton and Krebs 1994; Brodbeck and Shettleworth 1995; 
Hurly and Healy 1996, 2002) that in species with high 
spatial memory demands, like food-storing birds or brood 
parasites, memory of spatial cues always takes priority 
over non-spatial cues.

To summarize, our results in shiny and screaming 
cowbirds are consistent with an association between sex-
specific adaptations in cognition and neuroanatomy and 
sex- and species-specific ecological demands, such as 
remembering the precise location of multiple host nests 
in brood parasites (Clayton et al. 1997; Sherry 2006; Guig-
ueno and Sherry 2017; Sherry and Guigueno 2019). We 
showed that shiny and screaming cowbirds can relocate a 
food source that was learnt using both colour and spatial 
information using only the latter. Moreover, females per-
formed better than males in shiny cowbird, a species in 
which females use more spatial information as they search, 
prospect and parasitize host nests alone and have a larger 
hippocampus than conspecific males, while no sex dif-
ference was observed in screaming cowbirds, a species 
in which both sexes search, prospect and parasitize host 
nests together and they do not differ in hippocampus size.
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